

Figure 2. ORTEP drawing of 6.

ically,⁶ can also be obtained by reduction of 1 with $LiAlH_4$ or Na[AlH₂(OCH₂CH₂OCH₃)₂] in THF. By way of contrast, treatment of 1 with 1 equiv of LiBEt₃H in THF at ca. -24 °C results in the formation of a red-brown solution of Li⁺3. The air-sensitive but thermally stable (at ambient temperatures) monoanion 37 contains a bridging NO, a bridging PPh2 supported by an Fe-Fe bond,^{1a} and a terminal PPh₂H, with the PH hydrogen originating from the reducing agent (1 and LiBEt₃D yield Li⁺3- d_1).

When a THF solution of Li⁺³ was treated with 1 equiv of n-BuLi at -78 °C, immediate reaction occurred as evidenced by color change to bright red. The deprotonated binuclear species is provisionally assigned structure 4.8 It is thermally unstable and at ca. -70 °C in solution readily isomerizes to 2.

Solutions of (Li⁺)₂4 and Li⁺3 represent convenient entries to the novel isomeric complexes 5 and 6. Thus, the former rapidly reacts with CH_2I_2 at -78 °C to yield 5, which was isolated (ca. 20%) at 25 °C as a red, air-stable solid.⁹ Reaction of Li⁺³ with CH_2I_2 commences at ca. -63 °C to afford 6, which was isolated (35%) at 25 °C, along with 5 (<5%), as a deep red, moderately air-stable solid. Both 5 and 6 were characterized by X-ray crystallography, and their molecular structures are shown in Figures 1 and 2, respectively. Since 5 was not detected when the latter reaction was monitored by ³¹P NMR spectroscopy, its formation must have occurred during workup. Indeed, 6 undergoes unprecedented isomerization to 5 on heating in THF solution. This conversion is complete within 20 h at 55 °C, with 1 also being produced.

Whereas the formation of 5 from 4 and CH_2I_2 is not unexpected, that of 6 from 3 and CH_2I_2 invites comment. The former likely proceeds by interaction of the CH₂I₂ or CH₂I₂-derived carbon with the terminal PPh₂ group, followed by rapid completion of the μ -CH₂PPh₂ bridge. Since the first step of such a sequence is blocked for the reaction of CH_2I_2 with 3, initial interaction of the carbon probably occurs with $Fe_{(1)}$. The formation of $Fe_{(1)}(\mu$ -CH₂)Fe₍₂₎ may then continue by dissociation of PPh₂H and oxidative addition of $Fe_{(1)}CH_2I$ to $Fe_{(2)}$. Several pathways to the $Fe_{(1)}(\mu-Ph_2PPPh_2)Fe_{(2)}$ bridge in 6 may be proposed; the formation of μ -Ph₂PPPh₂ is unusual since reactions of P₂R₄ with metal carbonyls and nitrosyls commonly afford phosphido-bridged binuclear complexes.¹⁰

Acknowledgment. We gratefully acknowledge the financial

3705

support of the National Science Foundation (through Grant CHE-7911882), Ministero Pubblica Istruzione (Rome), and NATO (through Grant 068.81).

Registry No. 1, 14917-04-5; (Na⁺)₂, 89958-70-3; Li⁺3, 89958-71-4; (Li⁺)₂4, 89958-72-5; 5, 89958-73-6; 6, 89958-74-7.

Supplementary Material Available: Crystal data, final positional and thermal parameters, selected bond lengths and bond angles, and spectroscopic data for 5 and 6 (9 pages). Ordering information is given on any current masthead page.

Synthesis of 1-Azaazulene and Benz[a]azulene by **Carbene Rearrangement**

Curt Wentrup* and Jürgen Becker

Department of Chemistry, Philipps-Universität Marburg, Lahnberge, D-3550 Marburg, West Germany Received February 21, 1984

The ring expansion of arylcarbenes to cycloheptatrienylidenes/cycloheptatetraenes has been the subject of numerous mechanistic investigations,¹ but this reaction has found little use in the synthesis of seven-membered ring compounds. In fact, the equilibrating tolylcarbenes are trapped by methyl groups in the form of benzocyclobutene and styrene,^{1,2} but no corresponding intramolecular trapping products of the methylcycloheptatrienylidenes/methylcycloheptatetraenes have been reported. We now find that it is indeed possible to trap these seven-membered ring intermediates and to put the reaction to synthetic use in the preparation of azulene derivatives.

The initial experiments were not very encouraging: flash vacuum pyrolysis of the sodium salt of fluorene-2-carboxaldehyde tosylhydrazone³ at 400 °C (10⁻³ torr) gave a 1.5% yield of benz[a]azulene (8) together with a 2.0% yield of 4,8-dihydrocyclopenta [d.e.f] fluorene (9).⁴

Much better results were obtained with a different carbene precursor, 5-(2-fluorenyl)tetrazole (2), obtained by addition of HN_3 to the nitrile 1.⁵ The pyrolysis of 2 (1 g) at 420 °C (10⁻¹-10⁻³ torr) gave a 44% yield of benz[*a*]azulene (8) together with 4% of 9 (Scheme I). As is typical of tetrazoles, a cycloreversion to 2-cyanofluorene (1), isolated in 33% yield, also occurred. The products were separated by preparative gas chromatography (SE 30, 135 °C) and identified by spectral comparison with authentic samples.6,7

⁽⁶⁾ Dessy, R. E.; Kornmann, R.; Smith, C.; Haytor, R. J. Am. Chem. Soc.

¹⁹⁶⁸, 90, 2001. No spectroscopic data were reported for 2, however. (7) Li⁺³: IR (THF) $\nu_{N=0}$ 1704 m, 1660 s, $\nu_{N=0}$ 1420 w-m cm⁻¹; ³¹P[¹H] NMR (THF, 25 °C) δ 164.6 (d), 43.4 (d, J_{PP} = 19.6 Hz), temperature invarient to -73 °C; ³¹P NMR (THF, 25 °C) δ 164.6 (s, br), 43.4 (d, br, ¹ J_{PH} = 338 Hz). Li⁺³-d₁: ³¹P[¹H] NMR (THF, 25 °C) δ 164.0 (d), 42.2 (dt, J_{PP} = 20, ${}^{1}J_{PD}$ = 50 Hz). Na⁺3 and K⁺3 (from 1 and appropriate MBEt₃H): IR

⁽THF) $\nu_{N=0}$ [435 w-m cm⁻¹. (8) (Li⁺)₂4: ³¹P[¹H] NMR (THF, -78 °C) δ 159.6 (d), 20.5 (d, J_{PP} = 50 Hz); similar ³¹P NMR (THF, -78 °C), i.e., no one-bond P-H coupling for signal at δ 20.5.

⁽⁹⁾ In contrast, (Li⁺)₂2 and CH₂I₂ at -78 °C followed by warming to 25 ^oC afford 80-90% 1, but no detectable 5. (10) (a) Hieber, W.; Kummer, R. Z. Anorg. Allg. Chem. 1966, 344, 292.

⁽b) Hayter, R. G.; Williams, L. F. Inorg. Chem. 1964, 3, 717.

⁽¹⁾ Wentrup, C. Top. Curr. Chem. 1976, 62, 173. Jones, W. M.; Brinker, U. H. In "Pericyclic Reactions"; Marchand, A. P., Lehr, R. E., Eds.; Academic Press: New York, 1977; p 109. Wentrup, C. "Reactive Molecules"; Wiley: New York, 1984

⁽²⁾ Baron, W. J.; Jones, M., Jr.; Gaspar, P. P. J. Am. Chem. Soc. 1970, 92, 4739

⁽³⁾ Fluorene-2-carboxaldehyde tosylhydrazone: mp 190-192 °C; correct elemental analysis (C, H, N) was obtained. The sodium salt was prepared with NaH in ethanol-ether 1:1 (25 °C, 1 h), filtered under N2, and dried at 50 °C (10-2 torr) for 8 h.

⁽⁴⁾ Alder (Alder, R. W. University of Bristol, UK, private communication) has independently observed the formation in low yield of benz[a]azulene on pyrolysis of the sodium salt of fluorene-2-carboxaldehyde tosylhydrazone. The presence of 9 was assumed but not ascertained

⁽⁵⁾ **2** was obtained in 67% yield from 1 with NaN₃/NH₄Cl in DMF at 120 °C for 12 days: mp (dec) 252 °C; ¹H NMR (Me₂SO-d₆, 400 MHz) δ 8.26 (s, 1 H), 8.13 (d, 1 H), 8.08 (d, 1 H), 8.00 (d, 1 H), 7.64 (d, 1 H), 7.45 (t, 1 H), 7.39 (t, 1 H), 4.05 (s, 2 H), 3.5 (br, 1 H); mass spectrum m/z 234.0891 (calcd for $C_{14}H_{10}N_4$, 234.0905); correct elemental analysis (C, H, N) was obtained.

⁽⁶⁾ Benz[*a*]azulene: ¹H NMR (CDCl₃, 400 MHz, integral 1 H in each instance) δ 8.40 (d, J = 8 Hz), 8.32 (d, J = 8.3 Hz), 7.97 (d, J = 10.9 Hz), 7.89 (t of d, J = 1 and 8 Hz), 7.70 (ddd, J = 1, 7, and 8 Hz), 7.50 (ddd, J = 1, 7, and 8 Hz), 7.35 (s), 7.21 (tdd, $J \le 0.7$, 8.3, and 10.6 Hz), 7.05 (tdd, $J \le 0.7$, 8.3, and 10.6 Hz), 7.05 (tdd, $J \le 0.7$, 8.3, and 10.9 Hz); ¹³C NMR (CDCl₃, 25 MHz) δ 142.5, 140.6, 139.2, 135.9, 134.6, 131.9, 128.5, 127.9, 125.4, 123.7, 121.8, 120.8, 120.3, 116.1. This compound was identified by comparison with a sample prepared according to Alder and Whittaker.8

Scheme I

Evidence for the intermittant formation of 2-(diazomethyl)fluorene (3) was obtained by pyrolyzing 2 at 380 °C (10^{-4} torr)

(7) 4,8-Dihydrocyclopenta[d.e,f]fluorene: ¹H NMR (CDCl₃, 400 MHz) δ 7.34 (d, J = 7 Hz, 2 H), 7.16 (t, J = 7 Hz, 4 H), 4.31 (s, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 137.3 (s), 127.8 (d, J = 158 Hz), 126.5 (s), 124.4 (d, J = 158 Hz), 44.1 (t, J = 133 Hz). This compound was identified by comparison with a sample prepared according to: Trost, B. M.; Kinson, P. L. J. Am. Chem. Soc. **1970**, 92, 2591.

and condensing the product on a -196 °C KBr disk, thereby allowing the observation of a strong IR absorption at 2060 cm⁻¹. The formation of the products 8 and 9 is rationalized in terms of the equilibrating arylcarbenes 4-7. Carbene 4 undergoes insertion into the peri C-H bond to give 9. Ring expansion¹ of the carbenes 4-7 followed by a hydrogen shift gives 8.

The preparative advantage of this synthesis of benz[a]azulene is readily seen when comparing with the 0.5% yield of the best current preparation from fluorene and ethyl diazoacetate.⁸

The usefulness of the tetrazole pyrolysis is further seen in our preparation of 1-azaazulene (13), an otherwise difficultly accessible and unstable compound previously prepared in a lengthy synthesis in low yield.⁹ 5-Cyanoindole (10) was converted to the tetrazole 11 with HN₃.¹⁰ Pyrolysis of 11 at 350 °C (10^{-4} torr) allowed the detection of 5-diazomethylindole (12; 2060 cm⁻¹). At 500 °C ($10^{-1}-10^{-3}$ torr) 1-azaazulene¹¹ (13) was formed in 50% yield together with 30% of the product of cycloreversion, viz., 5-cyanoindole (10) (Scheme II). Thus, 1-azaazulene is readily available in a two-step synthesis from commercial 10.

If the nascent carbene function is moved from the six-membered to the five-membered ring in compounds of the types 3 and 12, the corresponding benzenoid hydrocarbons are formed in place of azulenes. Thus, we prepared the sodium salts of the tosyl-hydrazones of indene-2-carboxaldehyde, indole-3-carboxaldehyde, and fluorene-9-carboxaldehyde, which, on pyrolysis at 650 °C (10^{-3} torr) gave naphthalene, quinoline, and phenanthrene in isolated yields of 66%, 30%, and 50%, respectively.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Correct elemental analysis (C, H, N) was obtained. (11) **13**: picrate mp 196-197 °C dec (lit.⁹ 197-198 °C); UV (CH₃OH) λ 340, 330, 310, 260, 230 nm; ¹H NMR (CD₃OD, 400 MHz) δ 9.26 (d, J = 10 Hz, 1 H), 9.14 (d, J = 10 Hz, 1 H), 8.09 (d, J = 3 Hz, 1 H), 8.66 (t, J J = 10 Hz, 1 H), 8.49 (t, J = 10 Hz, 1 H), 8.43 (t, J = 10 Hz, 1 H), 7.69 (d, J = 3 Hz, 1 H); mass spectrum, m/z 129 (M⁺).

Additions and Corrections

Template Effects. 6. The Effect of Alkali Metal Ions on the Formation of Benzo-3x-crown-x Ethers over a Wide Range of Ring Sizes [J. Am. Chem. Soc. 1984, 106, 168]. LUIGI MANDOLINI* and BERNARDO MASCI*

Page 171: The corrected form of eq 3 is

$$k_{\text{obsd}} = \frac{k_{\text{i}} + k_{\text{ip}}K_{\text{ArO}} \gamma_{\pm}^{2}[\text{M}^{+}] + k_{\text{it}}K_{\text{ArO}} K_{\text{ArO}} M^{+} \gamma_{\pm}^{2}[\text{M}^{+}]^{2}}{1 + K_{\text{ArO}} \gamma_{\pm}^{2}[\text{M}^{+}] + K_{\text{ArO}} K_{\text{ArO}} M^{+} \gamma_{\pm}^{2}[\text{M}^{+}]^{2}}$$
(3)

⁽⁸⁾ Alder, R. W.; Whittaker, G. J. Chem. Soc., Perkin Trans 2 1975, 714.
(9) Nozoe, T.; Seto, S.; Matsumura, S.; Terasawa, T. Chem. Ind. (London)
1954, 30, 1356, 1357. Nishiwaki, T.; Abe, N. Heterocycles 1981, 15, 547.

¹⁹⁵⁴, 30, 1356, 1357. Nishiwaki, T.; Abe, N. Heterocycles **1981**, 75, 547. (10) **11**: mp 245 °C dec; ¹H NMR (Me₂SO- d_6 , 400 MHz) δ 11.50 (s, 1 H), 8.31 (s, 1 H), 7.81 (d, 1 H), 7.60 (d, 1 H), 7.48 (s, 1 H), 6.59 (s, 1 H), 6.5 (br, 1 H); mass spectrum, m/z 185.0773 (calcd for C₉H₇N₅, 185.0782); correct elemental analysis (C, H, N) was obtained.